Source code for mindspore.nn.optim.optimizer

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""optimizer"""
from typing import Iterable

import numpy as np

import mindspore
from mindspore.ops import functional as F, composite as C, operations as P
from mindspore.nn.cell import Cell
from mindspore.common.parameter import Parameter, ParameterTuple
from mindspore.common.initializer import initializer
import mindspore.common.dtype as mstype
from mindspore._checkparam import Validator as validator
from mindspore._checkparam import Rel
from mindspore.common.tensor import Tensor
from mindspore import log as logger

__all__ = ['Optimizer']


[docs]class Optimizer(Cell): """ Base class for all optimizers. This class defines the API to add Ops to train a model. Note: This class defines the API to add Ops to train a model. Never use this class directly, but instead instantiate one of its subclasses. Some optimizers support separating parameter groups. Different parameter groups can set different `learning_rate` and `weight_decay`. When separating parameter groups, the weight decay in each group will be applied on the parameters if the value of weight_decay > 0. When not separating parameter groups, the `weight_decay` in the API will be applied on the parameters if `weight_decay` > 0 and the 'beta' and 'gamma' are not in the name of parameters. Args: learning_rate (float): A floating point value for the learning rate. Should be greater than 0. parameters (Union[list[Parameter], list[dict]]): When the `parameters` is a list of `Parameter` which will be updated, the element in `parameters` should be class `Parameter`. When the `parameters` is a list of `dict`, the "params", "lr" and "weight_decay" are the keys can be parsed. - params: Required. The value should be a list of `Parameter`. - lr: Optional. If "lr" in the keys, the value of corresponding learning rate will be used. If not, the `learning_rate` in the API will be used. - weight_decay: Optional. If "weight_decay" in the keys, the value of corresponding weight decay will be used. If not, the `weight_decay` in the API will be used. weight_decay (float): A floating point value for the weight decay. It should be equal to or greater than 0. If the type of `weight_decay` input is int, it will be converted to float. Default: 0.0. loss_scale (float): A floating point value for the loss scale. It should be greater than 0. If the type of `loss_scale` input is int, it will be converted to float. Default: 1.0. Raises: ValueError: If the learning_rate is a Tensor, but the dims of tensor is greater than 1. TypeError: If the learning_rate is not any of the three types: float, Tensor, Iterable. """ def __init__(self, learning_rate, parameters, weight_decay=0.0, loss_scale=1.0): super(Optimizer, self).__init__(auto_prefix=False) if parameters and not isinstance(parameters, list): parameters = list(parameters) if not parameters: raise ValueError("Optimizer got an empty parameter list.") if not isinstance(parameters[0], (dict, Parameter)): raise TypeError("Only a list of Parameter or dict can be supported.") if isinstance(loss_scale, int): loss_scale = float(loss_scale) validator.check_value_type("loss_scale", loss_scale, [float], None) validator.check_number_range("loss_scale", loss_scale, 0.0, float("inf"), Rel.INC_NEITHER, None) if isinstance(weight_decay, int): weight_decay = float(weight_decay) validator.check_value_type("weight_decay", weight_decay, [float], None) validator.check_number_range("weight_decay", weight_decay, 0.0, float("inf"), Rel.INC_LEFT, None) self.is_group = False self.is_group_lr = False self.loss_scale = loss_scale if isinstance(learning_rate, float): self.dynamic_lr = False self.gather = None self.assignadd = None self.global_step = None self.scalar_lr = learning_rate else: self.dynamic_lr = True self.gather = P.GatherV2() self.assignadd = P.AssignAdd() self.global_step = Parameter(initializer(0, [1], mindspore.int32), name='global_step') self.scalar_lr = None learning_rate = self._get_single_lr(learning_rate) if isinstance(parameters[0], dict): self.is_group = True self.group_params = [] self.group_lr = [] self.group_weight_decay = [] self._init_group_params(parameters, learning_rate, weight_decay) if self.is_group_lr: self.learning_rate = ParameterTuple(self.group_lr) else: self.learning_rate = Parameter(learning_rate, name="learning_rate") if self.is_group: self.parameters = ParameterTuple(self.group_params) self.weight_decay = tuple(self.group_weight_decay) decay_filter = lambda x: x > 0 self.decay_flags = tuple(decay_filter(x) for x in self.weight_decay) else: self.parameters = ParameterTuple(parameters) self.weight_decay = weight_decay * loss_scale decay_filter = lambda x: 'beta' not in x.name and 'gamma' not in x.name self.decay_flags = tuple(decay_filter(x) for x in self.parameters) self.reciprocal_scale = 1.0 / loss_scale self.exec_weight_decay = any(self.decay_flags) self.param_length = len(self.parameters)
[docs] def decay_weight(self, gradients): """ Weight decay. An approach to reduce the overfitting of a deep learning neural network model. Args: gradients (tuple[Tensor]): The gradients of `self.parameters`, and have the same shape with `self.parameters`. Returns: tuple[Tensor], The gradients after weight decay. """ params = self.parameters if self.is_group: if self.exec_weight_decay: gradients = self.hyper_map(F.partial(apply_decay), self.weight_decay, self.decay_flags, params, gradients) else: if self.weight_decay > 0: gradients = self.hyper_map(F.partial(apply_decay, self.weight_decay), self.decay_flags, params, gradients) return gradients
[docs] def scale_grad(self, gradients): """ Loss scale for mixed precision. An approach of mixed precision training to improve the speed and energy efficiency of training deep neural network. Args: gradients (tuple[Tensor]): The gradients of `self.parameters`, and have the same shape with `self.parameters`. Returns: tuple[Tensor], The gradients after loss scale. """ if self.reciprocal_scale != 1.0: gradients = self.hyper_map(F.partial(grad_scale, self.reciprocal_scale), gradients) return gradients
def _get_single_lr(self, learning_rate): """Get learning rate in Tensor type.""" if isinstance(learning_rate, float): validator.check_number_range("learning rate", learning_rate, 0.0, float("inf"), Rel.INC_LEFT, self.cls_name) lr = Tensor(learning_rate, mstype.float32) elif isinstance(learning_rate, Iterable): lr = Tensor(np.array(list(learning_rate)).astype(np.float32)) elif isinstance(learning_rate, Tensor): if learning_rate.dim() > 1: raise ValueError("Learning rate should be a 0 or 1 dim `Tensor`," f"but got {learning_rate.dim()}.") if learning_rate.dim() == 1 and learning_rate.size() < 2: logger.warning("If want to use the dynamic learning rate, please make sure that the number " "of elements in the list, tuple or tensor passed is greater than 1.") lr = learning_rate else: raise TypeError("Learning rate should be float, Tensor or Iterable.") return lr def _init_group_params(self, parameters, learning_rate, weight_decay): """Init learning rate or weight decay in group params.""" origin_dynamic_lr = self.dynamic_lr if self.dynamic_lr: dynamic_lr_length = learning_rate.size() else: dynamic_lr_length = 0 for group_param in parameters: lr_length = dynamic_lr_length if 'lr' in group_param.keys(): self.is_group_lr = True self._get_single_lr(group_param['lr']) if isinstance(group_param['lr'], Iterable): lr_length = len(group_param['lr']) self.dynamic_lr = True elif isinstance(group_param['lr'], Tensor): lr_length = group_param['lr'].size() self.dynamic_lr = True if dynamic_lr_length not in (lr_length, 0): raise ValueError("The dynamic learning rate in group should be the same size.") dynamic_lr_length = lr_length if self.dynamic_lr and not origin_dynamic_lr: self.gather = P.GatherV2() self.assignadd = P.AssignAdd() self.global_step = Parameter(initializer(0, [1], mindspore.int32), name='global_step') params_store = [] for group_param in parameters: if not group_param['params']: raise ValueError("Optimizer got an empty parameter list.") self.group_params += group_param['params'] if 'lr' in group_param.keys(): params_dynamic_lr = isinstance(group_param['lr'], (Iterable, Tensor)) if self.dynamic_lr and not params_dynamic_lr: lr = Tensor(np.array([group_param['lr']] * dynamic_lr_length).astype(np.float32)) else: lr = self._get_single_lr(group_param['lr']) else: if self.dynamic_lr and not origin_dynamic_lr: lr = Tensor(np.array([self.scalar_lr] * dynamic_lr_length).astype(np.float32)) else: lr = learning_rate if 'weight_decay' in group_param.keys(): validator.check_float_legal_value('weight_decay', group_param['weight_decay'], None) validator.check_number_range('weight_decay', group_param['weight_decay'], 0.0, float("inf"), Rel.INC_LEFT, self.cls_name) weight_decay_ = group_param['weight_decay'] * self.loss_scale else: weight_decay_ = weight_decay * self.loss_scale for key in group_param.keys(): if key not in ('params', 'lr', 'weight_decay'): logger.warning(f"The optimizer cannot parse '{key}' when setting parameter groups.") for param in group_param['params']: validator.check_value_type("parameter", param, [Parameter], self.cls_name) if param.name in params_store: raise RuntimeError(f"The {param.name} parameter has appeared in parameter groups.") params_store.append(param.name) self.group_lr.append(Parameter(lr, name="lr_" + param.name)) self.group_weight_decay.append(weight_decay_)
[docs] def get_lr(self): """ Get the learning rate of current step. Returns: float, the learning rate of current step. """ if self.is_group_lr: lr = self.learning_rate if self.dynamic_lr: lr = () for i in range(self.param_length): current_dynamic_lr = self.gather(self.learning_rate[i], self.global_step, 0) lr += (current_dynamic_lr,) F.control_depend(lr, self.assignadd(self.global_step, 1)) else: lr = self.learning_rate if self.dynamic_lr: lr = self.gather(self.learning_rate, self.global_step, 0) F.control_depend(lr, self.assignadd(self.global_step, 1)) return lr
[docs] def get_lr_parameter(self, param): """ Get the learning rate of parameter. Args: param (Union[Parameter, list[Parameter]]): The `Parameter` or list of `Parameter`. Returns: Parameter, single `Parameter` or `list[Parameter]` according to the input type. """ if not isinstance(param, (Parameter, list)): raise TypeError(f"The parameter only support 'Parameter' or 'list' type.") if isinstance(param, list): lr = [] for p in param: validator.check_value_type("parameter", p, [Parameter], self.cls_name) if p not in self.parameters: raise ValueError(f"The parameter {p.name} is not in optimizer.") if self.is_group_lr: index = self.parameters.index(p) lr.append(self.learning_rate[index]) else: lr.append(self.learning_rate) else: if param not in self.parameters: raise ValueError(f"The parameter {param.name} is not in optimizer.") if self.is_group_lr: index = self.parameters.index(param) lr = self.learning_rate[index] else: lr = self.learning_rate return lr
def construct(self, *hyper_params): raise NotImplementedError
op_add = P.AddN() apply_decay = C.MultitypeFuncGraph("apply_decay") @apply_decay.register("Number", "Bool", "Tensor", "Tensor") def _tensor_apply_decay(weight_decay, if_apply, weight, gradient): """Get grad with weight_decay.""" if if_apply: return op_add((weight * weight_decay, gradient)) return gradient grad_scale = C.MultitypeFuncGraph("grad_scale") @grad_scale.register("Number", "Tensor") def tensor_grad_scale(scale, grad): """Get grad with scale.""" if scale == 1.0: return grad cast_op = P.Cast() type_op = P.DType() return grad * cast_op(F.scalar_to_array(scale), type_op(grad))