Source code for mindspore.ops.operations._quant_ops

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0(the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http:  // www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================

"""Operators for quantization."""

from ..._checkparam import Validator as validator
from ..._checkparam import Rel
from ..primitive import PrimitiveWithInfer, prim_attr_register
from ...common import dtype as mstype

__all__ = ["FakeQuantWithMinMax",
           "FakeQuantWithMinMaxGrad",
           "FakeQuantWithMinMaxPerChannel",
           "FakeQuantWithMinMaxPerChannelGrad",
           "BatchNormFold",
           "BatchNormFoldGrad",
           "CorrectionMul",
           "CorrectionMulGrad",
           "BatchNormFold2",
           "BatchNormFold2Grad",
           ]


[docs]class FakeQuantWithMinMax(PrimitiveWithInfer): r""" Simulate the quantize and dequantize operations in training time. Args: num_bits (int) : Number bits for aware quantilization. Default: 8. ema (bool): Use EMA algorithm update value min and max. Default: False. ema_decay (int) : EMA algorithm decay parameter. Default: 0.999. quant_delay (int): Quantilization delay parameter. Before delay step in training time not update simulate aware quantize funcion. After delay step in training time begin simulate the aware quantize funcion. Default: 0. symmetric (bool): Quantization algorithm use symmetric or not. Default: False. narrow_range (bool): Quantization algorithm use narrow range or not. Default: False. training (bool): Training the network or not. Default: True. Inputs: - **x** (Tensor) : float32 Tensor representing the shape of the output tensor. - **min** (Tensor) : Value of the min range of the input data x. - **max** (Tensor) : Value of the max range of the input data x. Outputs: - Tensor: Simulate quantize tensor of x. Examples: >>> input_tensor = Tensor(np.random.rand(3, 16, 5, 5), mstype.float32) >>> min_tensor = Tensor(np.array([-6]), mstype.float32) >>> max_tensor = Tensor(np.array([6]), mstype.float32) >>> output_tensor = P.FakeQuantWithMinMax(num_bits=8)(input_tensor, min_tensor, max_tensor) """ support_quant_bit = [4, 7, 8] @prim_attr_register def __init__(self, num_bits=8, ema=False, ema_decay=0.999, quant_delay=0, symmetric=False, narrow_range=False, training=True): """init FakeQuantWithMinMax OP""" if num_bits not in self.support_quant_bit: raise ValueError(f"For '{self.name}' attr \'num_bits\' is not support.") if ema and not ema_decay: raise ValueError(f"For '{self.name}' attr \'ema\' and \'ema_decay\' should set together.") self.ema = validator.check_value_type('ema', ema, (bool,), self.name) self.symmetric = validator.check_value_type('symmetric', symmetric, (bool,), self.name) self.narrow_range = validator.check_value_type('narrow_range', narrow_range, (bool,), self.name) self.training = validator.check_value_type('training', training, (bool,), self.name) self.ema_decay = validator.check_number_range('ema_decay', ema_decay, 0, 1, Rel.INC_BOTH, self.name) self.num_bits = validator.check_integer('num_bits', num_bits, 0, Rel.GT, self.name) self.quant_delay = validator.check_value_type('quant_delay', quant_delay, (int,), self.name) self.init_prim_io_names(inputs=['x', 'min', 'max'], outputs=['out']) def infer_shape(self, x_shape, min_shape, max_shape): validator.check_integer("x rank", len(x_shape), 1, Rel.GT, self.name) validator.check("min shape", min_shape, "max shape", max_shape, Rel.EQ, self.name) validator.check_integer("min rank", len(min_shape), 1, Rel.EQ, self.name) return x_shape def infer_dtype(self, x_type, min_type, max_type): valid_types = (mstype.float16, mstype.float32) validator.check_tensor_type_same({"x": x_type}, valid_types, self.name) validator.check_tensor_type_same({"min": min_type}, valid_types, self.name) validator.check_tensor_type_same({"max": max_type}, valid_types, self.name) return x_type
[docs]class FakeQuantWithMinMaxGrad(PrimitiveWithInfer): """Performs grad of FakeQuantWithMinMax operation.""" support_quant_bit = [4, 8] @prim_attr_register def __init__(self, num_bits=8, quant_delay=0): if num_bits not in self.support_quant_bit: raise ValueError(f"For '{self.name}' attr \'num_bits\' is not support.") self.quant_delay = validator.check_value_type('quant_delay', quant_delay, (int,), self.name) self.num_bits = validator.check_integer('num_bits', num_bits, 0, Rel.GT, self.name) self.init_prim_io_names(inputs=['dout', 'x', 'min', 'max'], outputs=['dx']) def infer_shape(self, dout_shape, x_shape, min_shape, max_shape): validator.check("dout shape", dout_shape, "x shape", x_shape, Rel.EQ, self.name) validator.check("min shape", min_shape, "max shape", max_shape, Rel.EQ, self.name) validator.check_integer("min rank", len(min_shape), 1, Rel.EQ, self.name) return dout_shape def infer_dtype(self, dout_type, x_type, min_type, max_type): valid_types = (mstype.float16, mstype.float32) validator.check_tensor_type_same({"dout": dout_type}, valid_types, self.name) validator.check_tensor_type_same({"x": x_type}, valid_types, self.name) validator.check_tensor_type_same({"min": min_type}, valid_types, self.name) validator.check_tensor_type_same({"max": max_type}, valid_types, self.name) return dout_type
[docs]class FakeQuantWithMinMaxPerChannel(PrimitiveWithInfer): r""" Simulate the quantize and dequantize operations in training time base on per channel. Args: num_bits (int) : Number bits to quantilization. Default: 8. ema (bool): Use EMA algorithm update tensor min and tensor max. Default: False. ema_decay (int) : EMA algorithm decay parameter. Default: 0.999. quant_delay (int): Quantilization delay parameter. Before delay step in training time not update the weight data to simulate quantize operation. After delay step in training time begin simulate the quantize operation. Default: 0. symmetric (bool): Quantization algorithm use symmetric or not. Default: False. narrow_range (bool): Quantization algorithm use narrow range or not. Default: False. training (bool): Training the network or not. Default: True. Inputs: - **x** (Tensor) : 4-D float32 Tensor representing the shape of the output tensor. - **min** (int, float) : Value of the min range of the input data. - **max** (int, float) : Value of the max range of the input data. Outputs: - Tensor, has the same type as input. Examples: >>> input_tensor = Tensor(np.random.rand(3,4,5,5), mstype.float32) >>> min_tensor = Tensor(np.array([-6.0, -6.5, -4.0, -5.0]), mstype.float32) >>> max_tensor = Tensor(np.array([6.0, 6.5, 4.0, 5.0]), mstype.float32) >>> output_tensor = P.FakeQuantWithMinMax(num_bits=8)(input_tensor, min_tensor, max_tensor) """ support_quant_bit = [4, 8] channel_idx = 0 @prim_attr_register def __init__(self, num_bits=8, ema=False, ema_decay=0.999, quant_delay=0, symmetric=False, narrow_range=False, training=True): """init FakeQuantWithMinMaxPerChannel OP""" if num_bits not in self.support_quant_bit: raise ValueError(f"For '{self.name}' Attr \'num_bits\' is not support.") if ema and not ema_decay: raise ValueError(f"For '{self.name}' attr \'ema\' and \'ema_decay\' should set together.") self.ema = validator.check_value_type('ema', ema, (bool,), self.name) self.symmetric = validator.check_value_type('symmetric', symmetric, (bool,), self.name) self.narrow_range = validator.check_value_type('narrow_range', narrow_range, (bool,), self.name) self.training = validator.check_value_type('training', training, (bool,), self.name) self.ema_decay = validator.check_number_range('ema_decay', ema_decay, 0, 1, Rel.INC_BOTH, self.name) self.num_bits = validator.check_integer('num_bits', num_bits, 0, Rel.GT, self.name) self.quant_delay = validator.check_value_type('quant_delay', quant_delay, (int,), self.name) self.init_prim_io_names(inputs=['x', 'min', 'max'], outputs=['out']) def infer_shape(self, x_shape, min_shape, max_shape): validator.check_integer("x rank", len(x_shape), 1, Rel.GT, self.name) validator.check_integer("min shape[0]", min_shape[0], x_shape[self.channel_idx], Rel.EQ, self.name) validator.check_integer("max shape[0]", max_shape[0], x_shape[self.channel_idx], Rel.EQ, self.name) return x_shape def infer_dtype(self, x_type, min_type, max_type): valid_types = (mstype.float16, mstype.float32) validator.check_tensor_type_same({"x": x_type}, valid_types, self.name) validator.check_tensor_type_same({"min": min_type}, valid_types, self.name) validator.check_tensor_type_same({"max": max_type}, valid_types, self.name) return x_type
[docs]class FakeQuantWithMinMaxPerChannelGrad(PrimitiveWithInfer): """Performs grad of FakeQuantWithMinMaxPerChannel operation.""" support_quant_bit = [4, 8] @prim_attr_register def __init__(self, num_bits=8, quant_delay=0): """init FakeQuantWithMinMaxPerChannel Fill""" if num_bits not in self.support_quant_bit: raise ValueError(f"For '{self.name}' attr \'num_bits\' is not support.") self.quant_delay = validator.check_value_type('quant_delay', quant_delay, (int,), self.name) self.num_bits = validator.check_integer('num_bits', num_bits, 0, Rel.GT, self.name) self.init_prim_io_names(inputs=['dout', 'x', 'min', 'max'], outputs=['dx']) def infer_shape(self, dout_shape, x_shape, min_shape, max_shape): validator.check("dout shape", dout_shape, "x shape", x_shape) validator.check("min shape", min_shape, "max shape", max_shape) return dout_shape def infer_dtype(self, dout_type, x_type, min_type, max_type): valid_types = (mstype.float16, mstype.float32) validator.check_tensor_type_same({"dout": dout_type}, valid_types, self.name) validator.check_tensor_type_same({"x": x_type}, valid_types, self.name) validator.check_tensor_type_same({"min": min_type}, valid_types, self.name) validator.check_tensor_type_same({"max": max_type}, valid_types, self.name) return dout_type
[docs]class BatchNormFold(PrimitiveWithInfer): """ Batch normalization folded. Args: momentum (float): Momentum value should be [0, 1]. Default: 0.1. epsilon (float): A small float number to avoid dividing by 0. 1e-12 if dtype in float32 else 1e-3. Default: 1e-12. is_training (bool): In training mode set True, else set False. Default: True. freeze_bn (int): Delay in steps at which computation switches from regular batch norm to frozen mean and std. Default: 0. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C)`. - **mean** (Tensor) - Tensor of shape :math:`(C,)`. - **variance** (Tensor) - Tensor of shape :math:`(C,)`. - **global_step** (Tensor) - Tensor to record current global step. Outputs: Tuple of 4 Tensor, the normalized input and the updated parameters. - **batch_mean** (Tensor) - Tensor of shape :math:`(C,)`. - **batch_std** (Tensor) - Tensor of shape :math:`(C,)`. - **running_mean** (Tensor) - Tensor of shape :math:`(C,)`. - **running_std** (Tensor) - Tensor of shape :math:`(C,)`. """ channel = 1 @prim_attr_register def __init__(self, momentum=0.1, epsilon=1e-12, is_training=True, freeze_bn=0): """init batch norm fold layer""" self.momentum = validator.check_number_range('momentum', momentum, 0, 1, Rel.INC_BOTH, self.name) self.epsilon = validator.check_float_positive('epsilon', epsilon, self.name) self.is_training = validator.check_value_type('is_training', is_training, (bool,), self.name) self.freeze_bn = validator.check_value_type('freeze_bn', freeze_bn, (int,), self.name) self.init_prim_io_names(inputs=['x', 'mean', 'variance', 'global_step'], outputs=['batch_mean', 'batch_std', 'running_mean', 'running_std']) def infer_shape(self, x_shape, mean_shape, variance_shape, global_step_shape): validator.check("mean shape", mean_shape, "gamma_shape", variance_shape, Rel.EQ, self.name) validator.check("mean_shape[0]", mean_shape[0], "input channel", x_shape[self.channel], Rel.EQ, self.name) validator.check_integer("global_step rank", len(global_step_shape), 1, Rel.EQ, self.name) return mean_shape, mean_shape, mean_shape, mean_shape def infer_dtype(self, x_type, mean_type, variance_type, global_step_type): validator.check("input type", x_type, "mean type", mean_type) validator.check("input type", x_type, "variance type", variance_type) args = {"x": x_type, "mean": mean_type, "variance": variance_type} validator.check_tensor_type_same(args, (mstype.float16, mstype.float32), self.name) validator.check_tensor_type_same({"global_step": global_step_type}, (mstype.int32,), self.name) return x_type, x_type, x_type, x_type
[docs]class BatchNormFoldGrad(PrimitiveWithInfer): """Performs grad of BatchNormFold operation.""" channel = 1 @prim_attr_register def __init__(self, epsilon=1e-12, is_training=True, freeze_bn=0): """init BatchNormGrad layer""" self.is_training = validator.check_value_type('is_training', is_training, (bool,), self.name) self.freeze_bn = validator.check_value_type('freeze_bn', freeze_bn, (int,), self.name) self.epsilon = validator.check_float_positive('epsilon', epsilon, self.name) self.init_prim_io_names(inputs=['d_batch_mean', 'd_batch_std', 'x', 'batch_mean', 'batch_std', 'global_step'], outputs=['dx']) def infer_shape(self, d_batch_mean_shape, d_batch_std_shape, x_shape, batch_mean_shape, batch_std_shape, global_step_shape): validator.check("d_batch_mean shape", d_batch_mean_shape, "d_batch_std shape", d_batch_std_shape, Rel.EQ, self.name) validator.check("d_batch_mean shape", d_batch_mean_shape, "batch_mean shape", batch_mean_shape, Rel.EQ, self.name) validator.check("d_batch_mean shape", d_batch_mean_shape, "batch_std shape", batch_std_shape, Rel.EQ, self.name) validator.check("d_batch_mean_shape[0]", d_batch_mean_shape[0], "input channel", x_shape[self.channel], Rel.EQ, self.name) validator.check_integer("global_step rank", len(global_step_shape), 1, Rel.EQ, self.name) return x_shape def infer_dtype(self, d_batch_mean_type, d_batch_std_type, x_type, batch_mean_type, batch_std_type, global_step_type): args = {"input": x_type, "d_batch_mean": d_batch_mean_type, "d_batch_std": d_batch_std_type, "batch_mean": batch_mean_type, "batch_std": batch_std_type} validator.check_tensor_type_same(args, (mstype.float16, mstype.float32), self.name) validator.check_tensor_type_same({"global_step": global_step_type}, (mstype.int32,), self.name) return x_type
[docs]class CorrectionMul(PrimitiveWithInfer): """ Scale the weights with a correction factor to the long term statistics prior to quantization. This ensures that there is no jitter in the quantized weights due to batch to batch variation. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C)`. - **batch_std** (Tensor) - Tensor of shape :math:`(C,)`. - **running_std** (Tensor) - Tensor of shape :math:`(C,)`. Outputs: - **out** (Tensor) - Tensor has the same shape as x. """ channel = 0 @prim_attr_register def __init__(self): """init correction mul layer""" self.init_prim_io_names(inputs=['x', 'batch_std', 'running_std'], outputs=['out']) def infer_shape(self, x_shape, batch_std_shape, running_std_shape): validator.check("batch_std shape", batch_std_shape, "running_std shape", running_std_shape, Rel.EQ, self.name) validator.check("batch_std_shape[0]", batch_std_shape[0], "x_shape channel size", x_shape[self.channel], Rel.EQ, self.name) return x_shape def infer_dtype(self, x_type, batch_std_type, running_std_type): args = {"x": x_type, "batch_std": batch_std_type, "running_std": running_std_type} validator.check_tensor_type_same(args, (mstype.float16, mstype.float32), self.name) return x_type
[docs]class CorrectionMulGrad(PrimitiveWithInfer): """Performs grad of CorrectionMul operation.""" channel = 0 @prim_attr_register def __init__(self): """init correction mul layer""" self.init_prim_io_names(inputs=['dout', 'x', 'gamma', 'running_std'], outputs=['dx', 'd_gamma']) def infer_shape(self, dout_shape, x_shape, gamma_shape, running_std_shape): validator.check("dout shape", dout_shape, "x_shape x", x_shape, Rel.EQ, self.name) validator.check("gamma_shape[0]", gamma_shape[0], "dout channel size", dout_shape[self.channel], Rel.EQ, self.name) validator.check("running_std_shape[0]", running_std_shape[0], "dout channel size", dout_shape[self.channel], Rel.EQ, self.name) return x_shape, gamma_shape def infer_dtype(self, dout_type, x_type, gamma_type, running_std_type): args = {"dout": dout_type, "x": x_type, "gamma": gamma_type, "running_std": running_std_type} validator.check_tensor_type_same(args, (mstype.float16, mstype.float32), self.name) return x_type, x_type
[docs]class BatchNormFold2(PrimitiveWithInfer): """ Scale the bias with a correction factor to the long term statistics prior to quantization. This ensures that there is no jitter in the quantized bias due to batch to batch variation. Inputs: - **x** (Tensor) - Tensor of shape :math:`(N, C)`. - **beta** (Tensor) - Tensor of shape :math:`(C,)`. - **gamma** (Tensor) - Tensor of shape :math:`(C,)`. - **batch_std** (Tensor) - Tensor of shape :math:`(C,)`. - **batch_mean** (Tensor) - Tensor of shape :math:`(C,)`. - **running_std** (Tensor) - Tensor of shape :math:`(C,)`. - **running_mean** (Tensor) - Tensor of shape :math:`(C,)`. - **global_step** (Tensor) - Tensor to record current global step. Outputs: - **y** (Tensor) - Tensor has the same shape as x. """ channel = 1 @prim_attr_register def __init__(self, freeze_bn=0): """init conv2d fold layer""" self.freeze_bn = validator.check_value_type('freeze_bn', freeze_bn, (int,), self.name) self.init_prim_io_names(inputs=['x', 'beta', 'gamma', 'batch_std', 'batch_mean', 'running_std', 'running_mean', 'global_step'], outputs=['y']) def infer_shape(self, x_shape, beta_shape, gamma_shape, batch_std_shape, running_std_shape, batch_mean_shape, running_mean_shape, global_step_shape): validator.check("batch_std shape", batch_std_shape, "running_std shape", running_std_shape, Rel.EQ, self.name) validator.check("batch_std shape", batch_std_shape, "batch_mean shape", batch_mean_shape, Rel.EQ, self.name) validator.check("batch_std shape", batch_std_shape, "beta shape", beta_shape, Rel.EQ, self.name) validator.check("batch_std shape", batch_std_shape, "running_mean shape", running_mean_shape, Rel.EQ, self.name) validator.check("batch_std shape", batch_std_shape, "batch_mean shape", gamma_shape, Rel.EQ, self.name) validator.check("batch_std_shape[0]", batch_std_shape[0], "x_shape channel size", x_shape[self.channel], Rel.EQ, self.name) validator.check_integer("global_step rank", len(global_step_shape), 1, Rel.EQ, self.name) return x_shape def infer_dtype(self, x_type, beta_type, gamma_type, batch_std_type, running_std_type, batch_mean_type, running_mean_type, global_step_type): args = {"batch_std": batch_std_type, "running_std": running_std_type, "batch_mean": batch_mean_type, "beta": beta_type, "running_mean": running_mean_type, "gamma": gamma_type, "x": x_type} validator.check_tensor_type_same(args, (mstype.float16, mstype.float32), self.name) validator.check_tensor_type_same({"global_step": global_step_type}, (mstype.int32,), self.name) return x_type
[docs]class BatchNormFold2Grad(PrimitiveWithInfer): """Performs grad of CorrectionAddGrad operation.""" channel = 1 @prim_attr_register def __init__(self, freeze_bn=0): """init MulFold layer""" self.freeze_bn = freeze_bn self.init_prim_io_names(inputs=['dout', 'x', 'gamma', 'batch_std', 'batch_mean', 'running_std', 'running_mean', 'global_step'], outputs=['d_batch_std', 'd_batch_mean', 'd_beta', 'd_gamma', 'dx']) def infer_shape(self, dout_shape, x_shape, gamma_shape, batch_std_shape, batch_mean_shape, running_std_shape, running_mean_shape, global_step_shape): validator.check("batch_std shape", batch_std_shape, "batch_mean shape", batch_mean_shape, Rel.EQ, self.name) validator.check("batch_std shape", batch_std_shape, "running_std shape", running_std_shape, Rel.EQ, self.name) validator.check("batch_std shape", batch_std_shape, "running_mean shape", running_mean_shape, Rel.EQ, self.name) validator.check("batch_std shape", batch_std_shape, "gamma shape", gamma_shape, Rel.EQ, self.name) validator.check("batch_std size", batch_std_shape[0], "dout channel size", dout_shape[self.channel], Rel.EQ, self.name) validator.check_integer("global_step rank", len(global_step_shape), 1, Rel.EQ, self.name) return gamma_shape, gamma_shape, gamma_shape, gamma_shape, x_shape def infer_dtype(self, dout_type, x_type, gamma_type, batch_std_type, batch_mean_type, running_std_type, running_mean_type, global_step_type): validator.check("batch_std type", batch_std_type, "batch_mean type", batch_mean_type) validator.check("batch_std type", batch_std_type, "gamma type", gamma_type) validator.check("batch_std type", batch_std_type, "running_std type", running_std_type) validator.check("batch_std type", batch_std_type, "running_mean type", running_mean_type) validator.check("batch_std_type", batch_std_type, "dout type", dout_type) args = {"batch_std": batch_std_type, "batch_mean": batch_mean_type, "gamma": gamma_type, "running_std": running_std_type, "running_mean": running_mean_type, "dout": dout_type} validator.check_tensor_type_same(args, (mstype.float16, mstype.float32), self.name) validator.check_tensor_type_same({"global_step": global_step_type}, (mstype.int32,), self.name) return gamma_type, gamma_type, gamma_type, gamma_type, gamma_type