Source code for mindspore.train.serialization

# Copyright 2020 Huawei Technologies Co., Ltd
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Model and parameters serialization."""
import os
import stat
import math
from threading import Thread, Lock
import numpy as np

import mindspore.nn as nn
from mindspore import log as logger
from mindspore.train.checkpoint_pb2 import Checkpoint
from mindspore.train.print_pb2 import Print
from mindspore.common.tensor import Tensor
from mindspore.common.initializer import initializer
from mindspore.common.parameter import Parameter
from mindspore.common.api import _executor
from mindspore.common import dtype as mstype
from mindspore._checkparam import check_input_data

__all__ = ["save_checkpoint", "load_checkpoint", "load_param_into_net", "export", "parse_print"]

tensor_to_ms_type = {"Int8": mstype.int8, "Uint8": mstype.uint8, "Int16": mstype.int16, "Uint16": mstype.uint16,
                     "Int32": mstype.int32, "Uint32": mstype.uint32, "Int64": mstype.int64, "Uint64": mstype.uint64,
                     "Float16": mstype.float16, "Float32": mstype.float32, "Float64": mstype.float64,
                     "Bool": mstype.bool_}

tensor_to_np_type = {"Int8": np.int8, "Uint8": np.uint8, "Int16": np.int16, "Uint16": np.uint16,
                     "Int32": np.int32, "Uint32": np.uint32, "Int64": np.int64, "Uint64": np.uint64,
                     "Float16": np.float16, "Float32": np.float32, "Float64": np.float64, "Bool": np.bool_}

_ckpt_mutex = Lock()
SLICE_SIZE = 512 * 1024 * 1024

def _special_process_par(par, new_par):
    Processes the special condition.

    Like (12,2048,1,1)->(12,2048), this case is caused by GE 4 dimensions tensor.
    par_shape_len = len(
    new_par_shape_len = len(
    delta_len = new_par_shape_len - par_shape_len
    delta_i = 0
    for delta_i in range(delta_len):
        if[par_shape_len + delta_i] != 1:
    if delta_i == delta_len - 1:
        new_val =
        new_val = new_val.reshape(
        return True
    return False

def _update_param(param, new_param):
    """Updates param's data from new_param's data."""

    if isinstance(, Tensor) and isinstance(, Tensor):
        if !=
            logger.error("Failed to combine the net and the parameters for param %s.",
            msg = ("Net parameters {} type({}) different from parameter_dict's({})"
            raise RuntimeError(msg)

        if !=
            if not _special_process_par(param, new_param):
                logger.error("Failed to combine the net and the parameters for param %s.",
                msg = ("Net parameters {} shape({}) different from parameter_dict's({})"
                raise RuntimeError(msg)


    if isinstance(, Tensor) and not isinstance(, Tensor):
        if != (1,) and != ():
            logger.error("Failed to combine the net and the parameters for param %s.",
            msg = ("Net parameters {} shape({}) is not (1,), inconsitent with parameter_dict's(scalar)."
            raise RuntimeError(msg)

    elif isinstance(, Tensor) and not isinstance(, Tensor):
        logger.error("Failed to combine the net and the parameters for param %s.",
        msg = ("Net parameters {} type({}) different from parameter_dict's({})"
               .format(, type(, type(
        raise RuntimeError(msg)


def _exec_save(ckpt_file_name, data_list):
    """Execute save checkpoint into file process."""

        with _ckpt_mutex:
            if os.path.exists(ckpt_file_name):
            with open(ckpt_file_name, "ab") as f:
                for name, value in data_list.items():
                    data_size = value[2].nbytes
                    if data_size > SLICE_SIZE:
                        slice_count = math.ceil(data_size / SLICE_SIZE)
                        param_slice_list = np.array_split(value[2], slice_count)
                        param_slice_list = [value[2]]

                    for param_slice in param_slice_list:
                        checkpoint_list = Checkpoint()
                        param_value = checkpoint_list.value.add()
                        param_value.tag = name
                        param_tensor = param_value.tensor
                        param_tensor.tensor_type = value[1]
                        param_tensor.tensor_content = param_slice.tostring()


        os.chmod(ckpt_file_name, stat.S_IRUSR)

    except BaseException as e:
        logger.error("Failed to save the checkpoint file %s.", ckpt_file_name)
        raise RuntimeError(e.__str__())

[docs]def save_checkpoint(parameter_list, ckpt_file_name, async_save=False): """ Saves checkpoint info to a specified file. Args: parameter_list (list): Parameters list, each element is a dict like {"name":xx, "type":xx, "shape":xx, "data":xx}. ckpt_file_name (str): Checkpoint file name. async_save (bool): Whether asynchronous execute save checkpoint into file. Default: False Raises: RuntimeError: Failed to save the Checkpoint file. """"Execute save checkpoint process.") data_list = {} with _ckpt_mutex: for param in parameter_list: key = param["name"] data_list[key] = [] if isinstance(param["data"], Parameter): param["data"].init_data() dims = [] if param['data'].shape == (): dims.append(0) else: for dim in param['data'].shape: dims.append(dim) data_list[key].append(dims) tensor_type = str(param["data"].dtype) data_list[key].append(tensor_type) data = param["data"].asnumpy().reshape(-1) data_list[key].append(data) if async_save: thr = Thread(target=_exec_save, args=(ckpt_file_name, data_list), name="asyn_save_ckpt") thr.start() else: _exec_save(ckpt_file_name, data_list)"Save checkpoint process finish.")
[docs]def load_checkpoint(ckpt_file_name, net=None): """ Loads checkpoint info from a specified file. Args: ckpt_file_name (str): Checkpoint file name. net (Cell): Cell network. Default: None Returns: Dict, key is parameter name, value is a Parameter. Raises: ValueError: Checkpoint file is incorrect. """ if not isinstance(ckpt_file_name, str): raise ValueError("The ckpt_file_name must be string.") if not os.path.exists(ckpt_file_name): raise ValueError("The checkpoint file is not exist.") if ckpt_file_name[-5:] != ".ckpt": raise ValueError("Please input the correct checkpoint file name.") if os.path.getsize(ckpt_file_name) == 0: raise ValueError("The checkpoint file may be empty, please make sure enter the correct file name.")"Execute load checkpoint process.") checkpoint_list = Checkpoint() try: with open(ckpt_file_name, "rb") as f: pb_content = checkpoint_list.ParseFromString(pb_content) except BaseException as e: logger.error("Failed to read the checkpoint file `%s`, please check the correct of the file.", ckpt_file_name) raise ValueError(e.__str__()) parameter_dict = {} try: element_id = 0 param_data_list = [] for element in checkpoint_list.value: data = element.tensor.tensor_content data_type = element.tensor.tensor_type np_type = tensor_to_np_type[data_type] ms_type = tensor_to_ms_type[data_type] element_data = np.frombuffer(data, np_type) param_data_list.append(element_data) if (element_id == len(checkpoint_list.value) - 1) or \ (element.tag != checkpoint_list.value[element_id + 1].tag): param_data = np.concatenate((param_data_list), axis=0) param_data_list.clear() dims = element.tensor.dims if dims == [0]: if 'Float' in data_type: param_data = float(param_data[0]) elif 'Int' in data_type: param_data = int(param_data[0]) parameter_dict[element.tag] = Parameter(Tensor(param_data, ms_type), name=element.tag) elif dims == [1]: parameter_dict[element.tag] = Parameter(Tensor(param_data, ms_type), name=element.tag) else: param_dim = [] for dim in dims: param_dim.append(dim) param_value = param_data.reshape(param_dim) parameter_dict[element.tag] = Parameter(Tensor(param_value, ms_type), name=element.tag) element_id += 1"Load checkpoint process finish.") except BaseException as e: logger.error("Failed to load the checkpoint file `%s`.", ckpt_file_name) raise RuntimeError(e.__str__()) if net is not None: load_param_into_net(net, parameter_dict) return parameter_dict
[docs]def load_param_into_net(net, parameter_dict): """ Loads parameters into network. Args: net (Cell): Cell network. parameter_dict (dict): Parameter dict. Raises: TypeError: Argument is not a Cell, or parameter_dict is not a Parameter dict. """ if not isinstance(net, nn.Cell): logger.error("Failed to combine the net and the parameters.") msg = ("Argument net should be a Cell, but got {}.".format(type(net))) raise TypeError(msg) if not isinstance(parameter_dict, dict): logger.error("Failed to combine the net and the parameters.") msg = ("Argument parameter_dict should be a dict, but got {}.".format(type(parameter_dict))) raise TypeError(msg)"Execute load parameter into net process.") net.init_parameters_data() param_not_load = [] for _, param in net.parameters_and_names(): if in parameter_dict: new_param = parameter_dict[] if not isinstance(new_param, Parameter): logger.error("Failed to combine the net and the parameters.") msg = ("Argument parameter_dict element should be a Parameter, but got {}.".format(type(new_param))) raise TypeError(msg) _update_param(param, new_param) else: param_not_load.append( if param_not_load: _load_dismatch_prefix_params(net, parameter_dict, param_not_load) logger.debug("Params not matched(in net but not in parameter_dict):") for param_name in param_not_load: logger.debug("%s", param_name)"Load parameter into net finish, {} parameters has not been loaded.".format(len(param_not_load)))
def _load_dismatch_prefix_params(net, parameter_dict, param_not_load): """When some net parameter did not load, try to continue load.""" prefix_name = "" longest_name = param_not_load[0] while prefix_name != longest_name and param_not_load: logger.debug("Count: {} parameters has not been loaded, try to load continue.".format(len(param_not_load))) prefix_name = longest_name for net_param_name in param_not_load: for dict_name in parameter_dict: if dict_name.endswith(net_param_name): prefix_name = dict_name[:-len(net_param_name)] break if prefix_name != longest_name: break if prefix_name != longest_name: logger.warning("Remove parameter prefix name: {}, continue to load.".format(prefix_name)) for _, param in net.parameters_and_names(): new_param_name = prefix_name + if in param_not_load and new_param_name in parameter_dict: new_param = parameter_dict[new_param_name] _update_param(param, new_param) param_not_load.remove( def _save_graph(network, file_name): """ Saves the graph of network to a file. Args: network (Cell): Obtain a pipeline through network for saving graph. file_name (str): Graph file name into which the graph will be saved. """"Execute save the graph process.") graph_proto = network.get_func_graph_proto() if graph_proto: with open(file_name, "wb") as f: f.write(graph_proto) os.chmod(file_name, stat.S_IRUSR) def _exec_save_checkpoint(train_network, ckpt_file_name, integrated_save=True, async_save=False): """ Saves checkpoint for 'ms' backend. Args: train_network (Network): The train network for training. ckpt_file_name (str): The name of checkpoint file. integrated_save (bool): Whether to integrated save in automatic model parallel scene. async_save (bool): Whether asynchronous execute save checkpoint into file. Default: False. """ train_network.init_parameters_data() param_dict = {} for _, param in train_network.parameters_and_names(): param_dict[] = param param_list = [] for (key, value) in param_dict.items(): each_param = {"name": key} if isinstance(, Tensor): param_data = else: param_data = Tensor( # in automatic model parallel scenario, some parameters were spliteds to all the devices, # which should be combined before saving if integrated_save and key in train_network.parameter_layout_dict: param_data = _get_merged_param_data(train_network, key, param_data) each_param["data"] = param_data param_list.append(each_param) save_checkpoint(param_list, ckpt_file_name, async_save) def _get_merged_param_data(net, param_name, param_data): """ Gets the merged data(tensor) from tensor slice, by device arrangement and tensor map. Args: net (Cell): MindSpore network. param_name(str): The parameter name, which to be combined. param_data(Tensor):The parameter data on the local device, It was a slice of the whole parameter data. Returns: Tensor, the combined tensor which with the whole data value. """ layout = [] layout = net.parameter_layout_dict[param_name] if len(layout) < 2:"layout dict does not contain the key %s", param_name) return param_data dev_mat = layout[0] tensor_map = layout[1] field_size = layout[3] from mindspore.parallel._cell_wrapper import get_allgather_cell from mindspore.parallel._tensor import _reshape_param_data, _reshape_param_data_with_weight # while any dim is not equal to -1, means param is splited and needs to be merged for dim in tensor_map: if dim != -1: allgather_net = get_allgather_cell() param_data = allgather_net(param_data) if field_size[0]: return _reshape_param_data_with_weight(param_data, dev_mat, field_size) return _reshape_param_data(param_data, dev_mat, tensor_map) return param_data def _fill_param_into_net(net, parameter_list): """ Fills parameter_list into net. Args: net (Cell): train network. parameter_list (list): parameters list from ge callback. """ parameter_dict = {} for each_param in parameter_list: param_name = each_param["name"] if isinstance(each_param["data"], Parameter): each_param["data"].init_data() np_val = each_param["data"].asnumpy() if np_val.shape == (1,): parameter_dict[param_name] = Parameter(np_val, name=param_name) elif np_val.shape == (): parameter_dict[param_name] = Parameter(Tensor(np_val.tolist(), mstype.pytype_to_dtype(np_val.dtype)), name=param_name) else: parameter_dict[param_name] = Parameter(Tensor(np_val), name=param_name) load_param_into_net(net, parameter_dict)
[docs]def export(net, *inputs, file_name, file_format='GEIR'): """ Exports MindSpore predict model to file in specified format. Args: net (Cell): MindSpore network. inputs (Tensor): Inputs of the `net`. file_name (str): File name of model to export. file_format (str): MindSpore currently supports 'GEIR', 'ONNX' and 'BINARY' format for exported model. - GEIR: Graph Engine Intermidiate Representation. An intermidiate representation format of Ascend model. - ONNX: Open Neural Network eXchange. An open format built to represent machine learning models. - BINARY: Binary format for model. An intermidiate representation format for models. """"exporting model file:%s format:%s.", file_name, file_format) check_input_data(*inputs, data_class=Tensor) supported_formats = ['GEIR', 'ONNX', 'BINARY'] if file_format not in supported_formats: raise ValueError(f'Illegal file format {file_format}, it must be one of {supported_formats}') # switch network mode to infer when it is training is_training = if is_training: net.set_train(mode=False) # export model net.init_parameters_data() if file_format == 'GEIR': phase_name = 'export.geir' graph_id, _ = _executor.compile(net, *inputs, phase=phase_name) _executor.export(file_name, graph_id) elif file_format == 'ONNX': # file_format is 'ONNX' # NOTICE: the pahse name `export_onnx` is used for judging whether is exporting onnx in the compile pipeline, # do not change it to other values. phase_name = 'export.onnx' graph_id, _ = _executor.compile(net, *inputs, phase=phase_name, do_convert=False) onnx_stream = _executor._get_func_graph_proto(graph_id) with open(file_name, 'wb') as f: os.chmod(file_name, stat.S_IWUSR | stat.S_IRUSR) f.write(onnx_stream) elif file_format == 'BINARY': # file_format is 'BINARY' phase_name = 'export.binary' graph_id, _ = _executor.compile(net, *inputs, phase=phase_name, do_convert=False) onnx_stream = _executor._get_func_graph_proto(graph_id, 'binary_ir') with open(file_name, 'wb') as f: os.chmod(file_name, stat.S_IWUSR | stat.S_IRUSR) f.write(onnx_stream) # restore network training mode if is_training: net.set_train(mode=True)
[docs]def parse_print(print_file_name): """ Loads Print data from a specified file. Args: print_file_name (str): The file name of save print data. Returns: List, element of list is Tensor. Raises: ValueError: The print file may be empty, please make sure enter the correct file name. """ print_file_path = os.path.realpath(print_file_name) if os.path.getsize(print_file_path) == 0: raise ValueError("The print file may be empty, please make sure enter the correct file name.")"Execute load print process.") print_list = Print() try: with open(print_file_path, "rb") as f: pb_content = print_list.ParseFromString(pb_content) except BaseException as e: logger.error("Failed to read the print file %s, please check the correct of the file.", print_file_name) raise ValueError(e.__str__()) tensor_list = [] try: for print_ in print_list.value: # String type if print_.HasField("desc"): tensor_list.append(print_.desc) elif print_.HasField("tensor"): dims = print_.tensor.dims data_type = print_.tensor.tensor_type data = print_.tensor.tensor_content np_type = tensor_to_np_type[data_type] param_data = np.fromstring(data, np_type) ms_type = tensor_to_ms_type[data_type] param_dim = [] for dim in dims: param_dim.append(dim) if param_dim: param_value = param_data.reshape(param_dim) tensor_list.append(Tensor(param_value, ms_type)) # Scale type else: data_type_ = data_type.lower() if 'float' in data_type_: param_data = float(param_data[0]) elif 'int' in data_type_: param_data = int(param_data[0]) elif 'bool' in data_type_: param_data = bool(param_data[0]) tensor_list.append(Tensor(param_data, ms_type)) except BaseException as e: logger.error("Failed to load the print file %s.", print_list) raise RuntimeError(e.__str__()) return tensor_list