Source code for mindspore.nn.wrap.loss_scale

# Copyright 2020 Huawei Technologies Co., Ltd
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# ============================================================================
"""Loss scale cell for loss scale training."""
from mindspore.nn.wrap.grad_reducer import DistributedGradReducer
from mindspore.train.parallel_utils import ParallelMode
from mindspore.parallel._utils import _get_device_num, _get_parallel_mode, _get_mirror_mean
from ..cell import Cell
from ...common import Tensor, ParameterTuple
from ...common.parameter import Parameter
from ...ops import functional as F
from ...ops import composite as C
from ...ops import operations as P
from ...ops.operations import NPUGetFloatStatus, NPUAllocFloatStatus, NPUClearFloatStatus, ReduceSum, LessEqual, \
    ControlDepend
from ...common import dtype as mstype

_grad_scale = C.MultitypeFuncGraph("grad_scale")
reciprocal = P.Reciprocal()


@_grad_scale.register("Tensor", "Tensor")
def tensor_grad_scale(scale, grad):
    return grad * reciprocal(scale)


[docs]class DynamicLossScaleUpdateCell(Cell): r""" Dynamic Loss scale update cell. For loss scaling training, the initial loss scaling value will be set to be `loss_scale_value`. In every training step, the loss scaling value will be updated by loss scaling value/`scale_factor` when there is overflow. And it will be increased by loss scaling value * `scale_factor` if there is no overflow for a continuous `scale_window` steps. This cell is used for Graph mode training in which all logic will be executed on device side(Another training mode is feed mode in which some logic will be executed on host). Args: loss_scale_value (float): Init loss scale. scale_factor (int): Coefficient of increase and decrease. scale_window (int): Maximum continuous training steps that do not have overflow. Inputs: - **inputs** (Tensor) - Tensor of shape :math:`(N, \ldots)`. - **label** (Tensor) - Tensor of shape :math:`(N, \ldots)`. Outputs: Tensor, a scalar Tensor with shape :math:`()`. Examples: >>> net_with_loss = Net() >>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9) >>> manager = nn.DynamicLossScaleUpdateCell(loss_scale_value=2**12, scale_factor=2, scale_window=1000) >>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=manager) >>> train_network.set_train() >>> >>> inputs = Tensor(np.ones([16, 16]).astype(np.float32)) >>> label = Tensor(np.zeros([16, 16]).astype(np.float32)) >>> output = train_network(inputs, label) """ def __init__(self, loss_scale_value, scale_factor, scale_window): super(DynamicLossScaleUpdateCell, self).__init__() self.scale_window = Tensor(scale_window, dtype=mstype.int32) self.scale_factor = Tensor(scale_factor, dtype=mstype.float32) self.loss_scale_value = loss_scale_value self.cur_iter = Parameter(Tensor(1, dtype=mstype.int32), name="current_iterator_step") self.last_overflow_iter = Parameter(Tensor(0, dtype=mstype.int32), name="last_overflow_iterator_step") self.select = P.Select() self.max = P.Maximum() self.minimum_loss_scale = Tensor(1.0, dtype=mstype.float32) self.reciprocal = P.Reciprocal() self.less_equal = P.LessEqual() self.logic_and = P.LogicalAnd() self.logic_not = P.LogicalNot() self.logic_or = P.LogicalOr() self.const_true = Tensor(True, dtype=mstype.bool_) def get_loss_scale(self): return self.loss_scale_value def construct(self, loss_scale, overflow): overflow_cond = overflow loss_scale_on_overflow = self.select(overflow_cond, self.max(loss_scale * self.reciprocal(self.scale_factor), self.minimum_loss_scale), loss_scale) should_inc = self.less_equal(self.scale_window, self.cur_iter - self.last_overflow_iter) last_iter_cond = self.logic_or(overflow_cond, should_inc) last_overflow_iter = self.select(last_iter_cond, self.cur_iter, self.last_overflow_iter) assign_last_iter = F.assign(self.last_overflow_iter, last_overflow_iter) update_scale_cond = self.logic_and(should_inc, self.logic_not(overflow_cond)) scale_mul_res = loss_scale_on_overflow * self.scale_factor scaled_loss_scale = self.select(update_scale_cond, scale_mul_res, loss_scale_on_overflow) assign_scaled_loss_scale = F.assign(loss_scale, scaled_loss_scale) inc_cur_iter = self.cur_iter + 1 assing_cur_iter = F.assign(self.cur_iter, inc_cur_iter) t = (assign_last_iter, assign_scaled_loss_scale, assing_cur_iter) F.control_depend(assign_last_iter, assing_cur_iter) return F.depend(overflow, t)
[docs]class FixedLossScaleUpdateCell(Cell): """ Static scale update cell, the loss scaling value will not be updated. For usage please refer to `DynamicLossScaleUpdateCell`. Args: loss_scale_value (float): Init loss scale. Examples: >>> net_with_loss = Net() >>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9) >>> manager = nn.FixedLossScaleUpdateCell(loss_scale_value=2**12) >>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=manager) >>> train_network.set_train() >>> >>> inputs = Tensor(np.ones([16, 16]).astype(np.float32)) >>> label = Tensor(np.zeros([16, 16]).astype(np.float32)) >>> output = train_network(inputs, label) """ def __init__(self, loss_scale_value): super(FixedLossScaleUpdateCell, self).__init__() self.loss_scale_value = loss_scale_value def get_loss_scale(self): return self.loss_scale_value def construct(self, _, overflow): return overflow
[docs]class TrainOneStepWithLossScaleCell(Cell): r""" Network training with loss scaling. This is a training step with loss scaling. It takes a network, an optimizer and possibly a scale update Cell as args. The loss scale value can be updated in both host side or device side. The TrainOneStepWithLossScaleCell will be compiled to be graph which takes `data`, `label`, `sens` as input data. The `sens` is acting as loss scaling value. If you want to update it on host side, the value should be provided. If `sens` is not given, the loss scale update logic should be provied by `scale_update_cell`. If `scale_update_cell` is not None and `sens` is provided, the `scale_update_cell` will be ignored. Args: network (Cell): The training network. optimizer (Cell): Optimizer for updating the weights. scale_update_cell(Cell): The loss scaling update logic cell. Default: None. Inputs: - **inputs** (Tensor) - Tensor of shape :math:`(N, \ldots)`. - **label** (Tensor) - Tensor of shape :math:`(N, \ldots)`. - **scaling_sens** (Tensor) - Tensor of shape :math:`()`. Outputs: Tuple of 3 Tensor, the loss, overflow flag and current loss scaling value. - **loss** (Tensor) - Tensor with shape :math:`()`. - **overflow** (Tensor) - Tensor with shape :math:`()`, type is bool. - **loss_scale** (Tensor) - Tensor with shape :math:`()`. Examples: >>> net_with_loss = Net() >>> optimizer = nn.Momentum(net_with_loss.trainable_params(), learning_rate=0.1, momentum=0.9) >>> manager = nn.DynamicLossScaleUpdateCell(init_loss_scale=2**12, scale_factor=2, scale_window=1000) >>> train_network = nn.TrainOneStepWithLossScaleCell(net_with_loss, optimizer, scale_update_cell=manager) >>> train_network.set_train() >>> >>> inputs = Tensor(np.ones([16, 16]).astype(np.float32)) >>> label = Tensor(np.zeros([16, 16]).astype(np.float32)) >>> scaling_sens = Tensor(np.full((1), np.finfo(np.float32).max), dtype=mindspore.float32) >>> output = train_network(inputs, label, scaling_sens) """ def __init__(self, network, optimizer, scale_update_cell=None): super(TrainOneStepWithLossScaleCell, self).__init__(auto_prefix=False) self.network = network self.network.add_flags(defer_inline=True) self.weights = ParameterTuple(network.trainable_params()) self.optimizer = optimizer self.grad = C.GradOperation('grad', get_by_list=True, sens_param=True) self.hyper_map = C.HyperMap() self.alloc_status = NPUAllocFloatStatus() self.get_status = NPUGetFloatStatus() self.clear_status = NPUClearFloatStatus() self.reduce_sum = ReduceSum(keep_dims=False) self.base = Tensor(1, mstype.float32) self.less_equal = LessEqual() self.depend_parameter_use = ControlDepend(depend_mode=1) self.allreduce = P.AllReduce() self.parallel_mode = _get_parallel_mode() self.grad_reducer = None self.reducer_flag = self.parallel_mode in [ParallelMode.DATA_PARALLEL, ParallelMode.HYBRID_PARALLEL] if self.reducer_flag: mean = _get_mirror_mean() degree = _get_device_num() self.grad_reducer = DistributedGradReducer(optimizer.parameters, mean, degree) self.is_distributed = self.parallel_mode != ParallelMode.STAND_ALONE self.loss_scale = None self.loss_scaling_manager = scale_update_cell if scale_update_cell: self.loss_scale = Parameter(Tensor(scale_update_cell.get_loss_scale(), dtype=mstype.float32), name="loss_scale") self.add_flags(has_effect=True) def construct(self, data, label, sens=None): weights = self.weights loss = self.network(data, label) # init overflow buffer init = self.alloc_status() # clear overflow buffer self.clear_status(init) if sens is None: scaling_sens = self.loss_scale else: scaling_sens = sens grads = self.grad(self.network, weights)(data, label, F.cast(scaling_sens, F.dtype(loss))) grads = self.hyper_map(F.partial(_grad_scale, scaling_sens), grads) if self.reducer_flag: # apply grad reducer on grads grads = self.grad_reducer(grads) # get the overflow buffer self.get_status(init) # sum overflow buffer elements, 0:not overflow , >0:overflow flag_sum = self.reduce_sum(init, (0,)) if self.is_distributed: # sum overflow flag over devices flag_reduce = self.allreduce(flag_sum) cond = self.less_equal(self.base, flag_reduce) else: cond = self.less_equal(self.base, flag_sum) overflow = cond if sens is None: overflow = self.loss_scaling_manager(self.loss_scale, cond) # if there is no overflow, do optimize if overflow: opt = False else: opt = self.optimizer(grads) ret = (loss, cond, scaling_sens) return F.depend(ret, opt)